INVENTORY OF AGRICULTURAL BIODIVERSITY IN THE GÜERA AND QUEMA SUBBASINS, OF THE TONOSI LOS SANTOS RIVER, PANAMA

Keywords: Shannon-Wiener index, Simpson index, species abundance, species richness, strata.

Abstract

Agricultural biodiversity is a key element for food and agriculture worldwide. Agrobiodiversity contributes with the food security of the population that inhabits the watersheds in Azuero. Therefore, the aim was to determine the agricultural biodiversity in the Güera and Quema sub-basins of the Tonosí River, so that this information facilitates the conservation of phytogenetic resources and agro-productive diversification. The study was carried out during the year 2017 in the province of Los Santos, using a database that included the location of sampling points, located in the sub-basins of Güera and Quema that were preliminarily surveyed in 2015 within the Agroclimatic Network project. A stratified sampling was applied to this base, required to estimate the probability (Z) at 95% and the maximum permissible error of 0.01. Three types of crops (strata) were established: fruit and timber trees; natural and improved pastures; agricultural crops. Agricultural biodiversity was analyzed using the Shannon-Wiener biodiversity index (H') and Simpson's dominance index (S). PAST 3.17 software was used. H'=3.6961 and D=0.0324 values were obtained, which indicate greater diversity for the Quema sub-basin, as it is more heterogeneous. When analyzing agricultural biodiversity by crop type (stratum) within the sampling points, the most relevant results were found in the Quema sub-basin, in fruit and timber trees (H'=3.3080 and D= 0.0456). In conclusion, the farms in the Quema sub-basin present richness and abundance values that reflect a more intensive and diversified management, as indicated by the values of the Shannon-Wiener index (H') and Simpson's index (D') and in the fruit and timber tree stratum, biodiversity is higher in the Quema farms, mainly in backyard crops, for self-consumption and occasional sale.

Downloads

Download data is not yet available.

References

Altieri, M. (2015). Agroecology, key concepts, principles and practices. Main learning points from training courses on Agroecology in Solo, Indonesia and Lusaka, Zambia. Third World Network (TWN) y Sociedad Latinoamericana de Agroecología (SOCLA). 47p. https://www.researchgate.net/publication/284158848

Álvarez, J., Rivas, I., Aguilera, L., y González, M. (2016). Diversidad y estructura de un pastizal en El Cerrillo, Piedras Blancas, Estado de México, México. Revista Mexicana de biodiversidad, 87(3), 980-989. https://doi.org/10.1016/j.rmb.2016.06.006

Barfod, A., Balhara, M., Dransfield, J., y Balslev, H. (2015). SE Asian Palms for Agroforestry and Home Gardens. Forest 6(12), 4607-4616. https://doi.org/10.3390/f6124389

Baul, T., Rahman, M., Moniruzzaman, Md., y Nandi, R. (2015). Status, utilization, and conservation of agrobiodiversity in farms: a case study in the northwestern region of Bangladesh. International Journal of Biodiversity Science, Ecosystems Services and Management, 11(4), 318-329. https://www.tandfonline.com/doi/full/10.1080/21513732.2015.1050456

Colwell, R. K. (2009). EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. User's Guide and application published at: http://purl.oclc.org/estimates.

Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2015). Recursos Genéticos y Biodiversidad para la Alimentación y la Agricultura. http://www.fao.org/assets/infographics/FAO-Infographic-CGRFA30-es.pdf

Franco, W., Peñafiel, M., Cerón, C., y Freire, E. (2016). Biodiversidad productiva y asociada en el Valle Interandino norte del Ecuador. Bioagro, 28(3), 181-192. http://www.redalyc.org/articulo.oa?id=85749314005

Hammer, Ø., Harper, D. A. T., y Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontología Electrónica, 4, 1-9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Hobbs, R., y Huenneke, L. (1992). Disturbance, diversity and invasion implications for conservation. Conservation Biology, (6), 324–337. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1523-1739.1992.06030324.x

Instituto de Innovación Agropecuaria de Panamá. (2024). Proyecto Red Agroclimática. 2015-2024. Grupo de investigación. https://proyectos.idiap.gob.pa/proyectos/Investigacion_agroclimatica_para_mejorar_la_sostenibilidad_del_agronegocio_en_Azuero./es

Jones, R., y Hargreaves, J. (1979). Improvements to the dry-weight-rank method for measuring botanical composition. Grass and Forage Science 34, 181-189. https://doi.org/10.1111/j.1365-2494.1979.tb01465.x

Karunarathna, M., y Wilson, C. (2017). Agricultural biodiversity and farm level technical efficiency: An empirical investigation. Journal of Forest Economics, 29(1), 38-46. http://dx.doi.org/10.1016/j.jfe.2017.08.002

Kehlenbeck, K., y Maass B. (2004). Crop diversity and classification of homegardens in Central Sulawesi, Indonesia. Agroforestry systems, 63(1), 53-62. https://link.springer.com/article/10.1023/B:AGFO.0000049433.95038.25

Lanz, B., Dietz, S., y Swanson, T. (2018). The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessmet. Ecological Economics, 144, 260-277. https://doi.org/10.1016/J.ECOLECON.2017.07.018

López, K. S., y González, G. T. (Eds.). (2014). Métodos y técnicas cualitativas y cuantitativas aplicables a la investigación en ciencias sociales. Tirant Humanidades México. file:///C:/Users/Usuario/Downloads/CAP_20_MUESTREO_ESTRATIFICADO.pdf

Mannetje, L., y Haydock, K. (1963). The dry weight-rank method for the botanical analysis of pasture. J Br Grassld Soc. 18, 268-275. https://doi.org/10.1111/j.1365-2494.1963.tb00362.x

Mostacedo, B., y Fredericksen T. (2000). Manual de métodos básicos de muestreo y análisis en ecología vegetal. http://www.bio-nica.info/biblioteca/mostacedo2000ecologiavegetal.pdf

Mwavu, E., Ariango, E., Ssegawa., Kalema, V., Bateganya, F., Waiswa, D., y Byakagaba, P. (2016). Agrobiodiversity of homegardens in a commercial sugar cane cultivation land matrix in Uganda. International Journal of Biodiversity Science, Ecosystems Services and Management, 12(3), 191–201. https://doi.org/10.1080/21513732.2016.1177595

Obayelu, O., Akintunde, O., y Obayelu, A. (2015). Determinants of on-farm cassava biodiversity in Ogun State, Nigeria. International Journal of Biodiversity Science, Ecosystems Services and Management, 11(4), 298-308. https://doi.org/10.1080/21513732.2015.1071282

Poggio, S. (2015). Los desafíos de aumentar la productividad agrícola y también conservar la biodiversidad en los paisajes rurales. http://ri.conicet.gov.ar/bitstream/handle/11336/46164/CONICET_Digital_Nro.ad95cc1a-c6ad-48cf-a218-4491b611803b_A.pdf?sequence=5&isAllowed=y

Puerta-Piñero, C., Gullison, R. E., Condit, R., Angermeier, P. L., Ibáñez, R., Pérez, R., Robinson, W. D., Jansen, P. A., y Roberts, J. H. (2014). Metodologías para el Sistema de Monitoreo de la Diversidad Biológica de Panamá (versión en Español). http://dx.doi.org/10.5479/si.ctfs.0001

Rojas Gutiérrez, A., Lozano Batache, L. A., y Yaya Mejía, M. (2011). Evaluación Ecológica y Estructural de los Bosques del Departamento del Tolima. Ibague, Colombia: Universidad del Tolima. file:///C:/Users/Usuario/Downloads/VegetacinTolima.pdf

Rügnitz, M., Chacón, M., y Porro, L. (2009). Guía para la determinación de carbono en pequeñas propiedades rurales. 1. Ed., Lima, Perú: Centro Mundial Agroflorestal (ICRAF)/Consórcio Iniciativa Amazônica (IA). 79 p. https://apps.worldagroforestry.org/downloads/Publications/PDFS/B16293.pdf

Secretaría del Convenio sobre la Diversidad Biológica. (2014). Perspectiva Mundial sobre la Diversidad Biológica 4. Evaluación a mitad de período sobre los avances en la implementación del Plan Estratégico para la Diversidad Biológica 2011-2020.155 p. https://www.cbd.int/gbo/gbo4/publication/gbo4-es-hr.pdf

Torres, N., Martínez, J., Laurido, C., y Zapata, A. (2016). Plantas medicinales de Panamá 1: Etnobotánica de la Reserva Forestal el Montuoso. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 15(6), 407-421. http://www.blacpma.usach.cl/sites/blacpma/files/articulo_4_-_1200_-_407_-_421_0.pdf

Torres, N., Martínez, J., Laurido, C., y Zapata, A. (2017). Plantas medicinales de Panamá 2: Etnobotánica de la Reserva Forestal La Tronosa, provincia de Los Santos. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 16(4), 361-384. http://www.blacpma.usach.cl/sites/blacpma/files/articulo_3_-_1305_-_361_-_384_0.pdf

Villarreal, J., Name, B., y García, R. (2013). Zonificación de suelos de Panamá en base a niveles de nutrientes. Ciencia Agropecuaria, (21), 71-89. ZONIFICACIÓN DE SUELOS DE PANAMÁ EN BASE A NIVELES DE NUTRIENTES | Ciencia Agropecuaria (revistacienciaagropecuaria.ac.pa)

Wali, S., Agaba, H., Balitta, P., Hafashimana, D., Nkandu, J., Kuria, A., … Sinclair, F. (2015). Tree species diversity and abundance in coffee farms adjacent to areas of different disturbance histories in Mabira forest system, central Uganda. International Journal of Biodiversity Science, Ecosystem Services & Management, 11(4), 309–317. https://doi.org/10.1080/21513732.2015.1050607

Published
2024-07-10
How to Cite
Batista-Villalobos, E., Batista-De Gracia, A., Osorio-Burgos, O., Ávila-Guevara, A., & Barba-Alvarado, A. (2024). INVENTORY OF AGRICULTURAL BIODIVERSITY IN THE GÜERA AND QUEMA SUBBASINS, OF THE TONOSI LOS SANTOS RIVER, PANAMA. Ciencia Agropecuaria, (39), 110-134. Retrieved from http://200.46.165.126/index.php/ciencia-agropecuaria/article/view/654
Section
Artículos

Most read articles by the same author(s)