MAIZE VARIETIES IN THE AZUERO REGION, PANAMA - 2017

  • Román Gordón-Mendoza Instituto de Investigación Agropecuaria de Panamá
  • Jorge Franco-Barrera Instituto de Investigación Agropecuaria de Panamá
  • Jorge Núñez-Cano Instituto de Investigación Agropecuaria de Panamá
  • Jorge Jaén-Villarreal Instituto de Investigación Agropecuaria de Panamá
  • Ana Sáez-Cigarruista Instituto de Investigación Agropecuaria de Panamá
  • Francisco Ramos-Manzané Instituto de Investigación Agropecuaria de Panamá
  • Aurisbel Ávila-Guevara Instituto de Investigación Agropecuaria de Panamá
Keywords: Synthetics, Biplot GGE-SReg, QPM, Alpha Lattice, yellow grain.

Abstract

To evaluate the adaptability and stability of new synthetic varieties of normal and quality protein maize yellow grain, an experiment was planted in four locations in Azuero region. The genetic material consisted of twelve varieties from CIMMYT. We used the experimental design Alfa Lattice 4 x 3 with three replicates. The data obtained was analyzed by combined variance analisys REML type and the means were separate using the minimum difference significant. According to the analysis of variance the Environment (E) captured 33% of the total square sum of the experiment. The average yield across the four locations was 6,11 t.ha-1. The analysis of variance showed highly significant differences between the different varieties evaluated (G) for the variable grain yield; reaching to capture 36% of the sum of squares of the analysis of variance. Of the cultivars evaluated S10TLYNGSHGAB01, S16LTYQHGAB05, S16LTYQHGAB01, S10TLYNGSHGAB02, S07TLYNHGAB02 and S16LTYQHGAB03 surpassed the general average, protruding significantly the first two by their agronomic characteristics. The control IDIAP-MV-1102 had a performance of 5,80 t.ha-1, and it was exceeded by more than 15% by the first three varieties. The first two main axes or components of the interaction G x E, of the analysis Biplot GGE-SReg explained 94,2%. The most stable varieties were S10TLYNGSHGAB01 and S16LTYQHGAB03. This same analysis classified the environments in two groups. The varieties S10TLYNGSHGAB01, S16LTYQHGAB03, S16LTYQHGAB05, S10TLYNGSHGAB01, presented the best performance in the first environmental group, while the varieties S16LTYQHGAB05, S07TLYNHGABA02, S10TLYNGSHGAB01, S10TLYNGSHGAB02, presented a good performance in the second environmental group.

Downloads

Download data is not yet available.

References

Camargo-Buitrago, I; Gordón-Mendoza, R; Quirós-McIntire, EI. 2017. La repetitividad como estimador de la precisión experimental en el análisis de experimentos. Revista Agronomía Mesoamericana 28(1):159-169.

Gordón Mendoza, R; Franco Barrera, JE; Camargo Buitrago, I. 2016. Impacto de la tecnología generada en el cultivo de maíz para la Región de Azuero. Ciencia Agropecuaria 24:1-18.

Gordón M, R; Camargo B, I. 2015. Selección de estadísticos para la estimación de la precisión experimental en ensayos de maíz. Revista Agronomía Mesoamericana 26(1) 55:63.

Gordón, R. 2012. Manejo Integral del cultivo de maíz. Instituto de Investigación Agropecuaria de Panamá. 18 p.

Holland, JB. 2006. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci. 46:642-654. doi:10.2135/cropsci2005.0191

Johnson, DE. 1998. Métodos multivariados aplicados al análisis de datos. International Thompson Editors. 566 p. Cap 9.

Neelin, JD; Munnich, M; Su, H; Meyerson, JE; Holloway, CE. 2006. Tropical drying trends in global warming models and observations. PNAS 103:6110-6115.

Ruane, AC; DeWayne, CL; Horton, RM; Gordón, R; McCollum, R; Brown, D; Killough, B; Goldberg, R; Greeley, AP; Rosenzweig, C. 2013. Climate change impact uncertainties for maize in Panama: Farm information, climate projections, and yield sensitivities. Agricultural and Forest Meteorology. 170:132-145. http://dx.doi.org/10.1016/j.agrformet.2011.10.015

Srivastava, AM; Mboh, CM; Zhao, G; Gaiser, T; Ewert, F. 2018 Climate change impact under alternate realizations of climate scenarios on maize yields and biomass in Ghana. Agricultural Systems. 159:157-174. http://dx.doi.org/10.1016/j.agsy.2017.03.011

Vargas, M; Combs, E; Alvarado, G; Atlin, G; Mathews, K; Crossa, J. 2013. META: A suite of SAS Programs to analyze Multi environment breeding trials. Agron. J. 105:11-19.

Yan, W; Hunt, LA; Sheng, Q; Szlavnics, Z. 2000. Cultivar Evaluation and Mega Environment Investigation based on the GGE Biplot. Crop Sci. 40:597-605.

Published
2018-05-04
How to Cite
Gordón-Mendoza, R., Franco-Barrera, J., Núñez-Cano, J., Jaén-Villarreal, J., Sáez-Cigarruista, A., Ramos-Manzané, F., & Ávila-Guevara, A. (2018). MAIZE VARIETIES IN THE AZUERO REGION, PANAMA - 2017. Ciencia Agropecuaria, (28), 117-131. Retrieved from http://200.46.165.126/index.php/ciencia-agropecuaria/article/view/13
Section
Artículos

Most read articles by the same author(s)