IDENTIFICACIÓN DE VARIANTES DEL GEN KAPPA-CASEÍNA DE INTERÉS EN LA PRODUCCIÓN LÁCTEA EN RAZAS PANAMEÑAS

Palabras clave: Biodiversidad, calidad de la leche, caseína, razas criollas, SNP.

Resumen

El estudio caracteriza las variantes del gen de la kappa-caseína (CSN3) en las razas bovinas Guaymí y Guabalá, relevantes para la industria láctea por su influencia en la calidad de leche y producción de queso. El objetivo fue identificar variaciones genéticas en el gen CSN3 y su potencial para mejorar la producción de leche en estas razas. Se analizaron 34 muestras de ADN mediante 12 marcadores polimórficos usando la plataforma Affymetrix Array. Los resultados mostraron que cinco variantes fueron polimórficas en ambas razas, destacando diferencias alélicas entre ellas, lo que sugiere presiones selectivas diversas. Los SNP rs450402006 y rs43703015 mostraron frecuencias que coinciden con estudios previos en otras razas, indicando patrones de conservación genética y potenciales para programas de mejora genética enfocados en la producción láctea.

Descargas

La descarga de datos todavía no está disponible.

Citas

Alexander, L. J., Stewart, A. F., MacKinlay, A. G., Kapelinskaya, T. V., Tkach, T. M., & Gorodetsky, S. I. (1988). Isolation and characterization of the bovine kappa-casein gene. Eur. J. Biochem, 178(2), 395–401. https://doi.org/10.1111/j.1432-1033.1988.tb14463.x

Alim, M. A., Dong, T., Xie, Y., Wu, X. P., Zhang, Y., Zhang, S., & Sun, D. X. (2014). Effect of polymorphisms in the CSN3 (κ-casein) gene on milk production traits in Chinese Holstein cattle. Mol. Biol. Rep., 41(11), 7585-7593. https://doi.org/10.1007/s11033-014-3648-x

Amalfitano, N., Mota, L., Rosa, G., Cecchinato, A., & Bittante, G. (2022). Role of CSN2, CSN3, and BLG genes and the polygenic background in the cattle milk protein profile. J. Dairy Sci. 105, 6001-6020. https://doi.org/10.3168/jds.2021-21421

Asmarasari, S., Sumantri, C., Gunawan, A., Taufik, E., Anggraeni, A., Hapsari, A., & Dewantoro, B. (2021). Kappa casein (CSN3) gene polymorphism and its effect on cumulative milk yields of Holstein Friesian dairy cattle. IOP Conf. Ser. Earth Environ. Sci., 902 012047. https://doi.org/10.1088/1755-1315/902/1/012047

Bonfatti, V., Di Martino, G., Cecchinato, A., Degano, L, & Carnier, P. (2010). Effects of beta-kappa-casein (CSN2-CSN3) haplotypes, beta-lactoglobulin (BLG) genotypes, and detailed protein composition on coagulation properties of individual milk of Simmental cows. J. Dairy Sci., 93(8), 3809-3817. https://doi.org/10.3168/jds.2009-2779

Bugeac, T., Bâlteanu, V. A., & Creangă, Ș. (2013). Kappa-Casein genetic variants and their relationships with milk production and quality in Montbéliarde dairy cows. Bull Univ Agric Sci Vet Med Cluj-Napoca, Anim Sci Biotechnol, 70(1), 193-194. https://www.academia.edu/6847250/Kappa_Casein_Genetic_Variants_and_their_Relationships_with_Milk_Production_and_Quality_in_Montb%C3%A9liarde_Dairy_Cows

Caroli, A. M., Chessa, S., & Erhardt, G. J. (2009). Invited review: Milk protein polymorphisms in cattle: effect on animal breeding and human nutrition. J Dairy Sci, 92(11), 5335-5352. https://doi.org/10.3168/jds.2009-2461

Cezard, T., Cunningham, F., Hunt, S. E., Koylass, B., Kumar, N., Saunders, G., Shen, A., Silva, A. F., Tsukanov, K., Venkataraman, S., Flicek, P., Parkinson, H., & Keane, T. M. (2022). The European Variation Archive: a FAIR resource of genomic variation for all species. Nucleic Acids Res, 50(D1), D1216-D1220. https://doi.org/10.1093/nar/gkab960

Damiani, G., Ferretti, L., Rognoni, G., & Sgaramella, V. (1990). Restriction fragment length polymorphism analysis of the κ‐casein locus in cattle. Animal Genetics, 21(2), 107-114. DOI:10.1111/j.1365-2052.1990.tb03214.x

Elsik, C. G., Unni, D. R., Diesh, C. M., Tayal, A., Emery, M. L., Nguyen, H. N., & Hagen, D. E. (2016). Bovine Genome Database: new tools for gleaning function from the Bos taurus genome. Nucleic Acids Research, 44(D1), D834-D839. https://doi.org/10.1093/nar/gkv1077

Farhadian, M., Rafat, S. A., Mayack, C., & Bohlouli, M. (2022). Intra- and interspecies RNA-Seq based variants in the lactation process of ruminants. Animals, 12(24), 3592. https://doi.org/10.3390/ani12243592

Farrell Jr., H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicks, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F., & Swaisgood, H. E. (2004). Nomenclature of the proteins of cows' milk--sixth revision. J. Dairy Sci., 87(6), 1641-1674. https://doi.org/10.3168/jds.S0022-0302(04)73319-6

Fontanesi, L., Calò, D. G., Galimberti, G., Negrini, R., Marino, R., Nardone, A., Ajmone-Marsan, P., & Russo, V. (2014). Candidate gene association study for nine economically important traits in Italian Holstein cattle. Anim. Genet., 45(4), 576-580. https://doi.org/10.1111/age.12164

Howe, K. L., Achuthan, P., Allen, J., Allen, J., Alvarez-Jarreta, J., & Amode, M. R. (2021). Ensembl 2021. Nucleic Acids Res, 49(D1), D884-D891. https://doi.org/10.1093/nar/gkaa942

Hu, Z. L., Park, C. A., & Reecy, J. M. (2022). Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res, 50(D1), D956-D961. https://doi.org/10.1093/nar/gkab1116

Kovalchuk, S., Tagmazyan, A., & Klimov, E. (2019) A novel test system for genotyping rs43703016 single-nucleotide substitutions in the bovine CSN3 gene. Annu Res Rev Biol, 32(4). https://doi.org/10.9734/arrb/2019/v32i430090

Kruchinin, A. G., Illarionova, E. E., Galstyan, A. G., Turovskaya, S. N., Bigaeva, A. V., Bolshakova, E. I., & Strizhko, M. N. (2023). Effect of CSN3 gene polymorphism on the formation of milk gels induced by physical, chemical, and biotechnological factors. Foods, 12(9), 1767. https://doi.org/10.3390/foods12091767

Ladyka, V. I., Sklyarenko, Y. I., & Pavlenko, Y. M. (2022). Formation of economically useful traits in cows of Ukrainian brown dairy breed of different genotypes by kappa-casein. Animal Breeding and Genetics, 63, 161-168. https://doi.org/10.31073/abg.63.15

Lavon, Y., Weller, J. I., Zeron, Y., & Ezra, E. (2024). Estimating the effect of the kappa casein genotype on milk coagulation properties in Israeli Holstein cows. Animals, 14(1), 54. https://doi.org/10.3390/ani14010054

Lewerentz, F., Vanhala, T. K., Johansen, L. B., Paulsson, M., Glantz, M., & de Koning, D. J. (2024). Re-sequencing of the casein genes in Swedish Red cattle giving milk with diverse protein profiles and extreme rennet coagulation properties. JDS Commun, 5(4), 299-304. https://doi.org/10.3168/jdsc.2023-0412

Lischer, H. E. L., & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642

Mahmoudi, P., Rostamzadeh, J., Rashidi, A., Zergani, E., & Razmkabir, M. (2020). A meta-analysis on association between CSN3 gene variants and milk yield and composition in cattle. Anim. Genet., 51(3), 369-381. https://doi.org/10.1111/age.12922

Meier, S., Korkuć, P., Arends, D., & Brockmann, G. A. (2019). DNA sequence variants and protein haplotypes of casein genes in German Black Pied Cattle (DSN). Front. Genet., 10,1129. https://doi.org/10.3389/fgene.2019.01129

Pauciullo, A., Gaspa, G., Zhang, Y., Liu, Q., & Cosenza, G. (2024). CSN1S1, CSN3 and LPL: Three validated gene polymorphisms useful for more sustainable dairy production in the Mediterranean River Buffalo. Animals, 14(10), 1414. https://doi.org/10.3390/ani14101414

Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. http://bioinformatics.oxfordjournals.org/content/28/19/2537

Rachagani, S., & Gupta, I. D. (2008). Bovine kappa-casein gene polymorphism and its association with milk production traits. Genet. Mol. Biol., 31 (4), 893-897. https://doi.org/10.1590/S1415-47572008005000001

Raschia, M. A., Nani, J. P., Maizon, D. O., Beribe, M. J., Amadio, A. F., & Poli, M. A. (2018). Single nucleotide polymorphisms in candidate genes associated with milk yield in Argentinean Holstein and Holstein x Jersey cows. J Anim Sci Technol, 60(31). https://doi.org/10.1186/s40781-018-0189-1

Robinson, J., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E., Getz, G., & Mesirov, J. P. (2011). Integrative Genomics Viewer. Nat Biotechnol, 29, 24-26. https://doi.org/10.1038/nbt.1754

Schopen, G. C., Visker, M. H., Koks, P. D., Mullaart, E., van Arendonk, J. A., & Bovenhuis, H. (2011). Whole-genome association study for milk protein composition in dairy cattle. J. Dairy Sci., 94(6), 3148-3158. https://doi.org/10.3168/jds.2010-4030

Tiplady K. M., Lopdell, T. J., Reynolds, E., Sherlock, R. G., Keehan, M., Johnson, T. JJ., Pryce, J. E., Davis, S. R., Spelman, R. J., Harris, B. L., Garrick, D. J., & Littlejohn, M. D. (2021). Sequence-based genome-wide association study of individual milk mid-infrared wavenumbers in mixed-breed dairy cattle. Genet Sel Evol, 53, 62. https://doi.org/10.1186/s12711-021-00648-9

Younis, A., Hussain, I., Ahmad, S. N., Shah, A., Inayat, I., Kanwal, M. A., Suleman S, Kamran, M. A., Matloob, S., & Ahmad, K. R. (2024). Validation of Bos taurus SNPs for milk productivity of Sahiwal breed (Bos indicus), Pakistan. Animals, 14(9), 1306. https://doi.org/10.3390/ani14091306

Zambrano-Burbano, G. L., Eraso-Cabrera, Y. M., Solarte-Portilla, C. E., & Rosero-Galindo, C. Y. (2012). Relationship between kappa casein genes (CSN3) and industrial yield in Holstein cows in Nariño-Colombia. InTechOpen. http://dx.doi.org/10.5772/47818

Publicado
2025-07-25
Cómo citar
Villalobos-Cortés, A., Rodríguez-Espino, G., & Franco-Schafer, S. (2025). IDENTIFICACIÓN DE VARIANTES DEL GEN KAPPA-CASEÍNA DE INTERÉS EN LA PRODUCCIÓN LÁCTEA EN RAZAS PANAMEÑAS. Ciencia Agropecuaria, (41), 141-153. Recuperado a partir de http://200.46.165.126/index.php/ciencia-agropecuaria/article/view/681
Sección
Artículos

Artículos más leídos del mismo autor/a